Excited-State Geometries of Heteroaromatic Compounds: A Comparative TD-DFT and SAC-CI Study.

نویسندگان

  • Diane Bousquet
  • Ryoichi Fukuda
  • Phornphimon Maitarad
  • Denis Jacquemin
  • Ilaria Ciofini
  • Carlo Adamo
  • Masahiro Ehara
چکیده

The structures of low-lying singlet excited states of nine π-conjugated heteroaromatic compounds have been investigated by the symmetry-adapted cluster-configuration interaction (SAC-CI) method and the time-dependent density functional theory (TDDFT) using the PBE0 functional (TD-PBE0).In particular, the geometry relaxation in some ππ* and nπ* excited states of furan, pyrrole, pyridine, p-benzoquinone, uracil, adenine, 9,10-anthraquinone, coumarin, and 1,8-naphthalimide as well as the corresponding vertical transitions, including Rydberg excited states, have been analyzed in detail. The basis set and functional dependence of the results was also examined. The SAC-CI and TD-PBE0 calculations showed reasonable agreement in both transition energies and excited-state equilibrium structures for these heteroaromatic compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excited-State Parameters of One Intramolecular Cyclization by TD-DFT, CIS and ZINDO Methods

Using a time-dependent-density functional theory (TD-DFT), Configuration Interaction Singles (CIS) and Zerner’s Intermediate Neglect of Differential Overlap (ZINDO) methods, we have investigated the UV-Visible spectra of one new intramolecular cyclization at before and after intramolecular attack. All structures were optimized at the B3LYP/6-311++G** level while UV-Visible parameters were calcul...

متن کامل

A DFT-based comparative study on the excited states intramolecular proton transfer in 1-hydroxy-2-naphthaldehyde and 2-hydroxy-3-naphthaldehyde

Potential energy (PE) curves for the intramolecular proton transfer in the ground (GSIPT) and excited (ESIPT) states of 1-hydroxy-2naphthaldehyde (1H2NA) and 2-hydroxy-3-naphthaldehyde (2H3NA) were studied using DFT/B3LYP(6-31G) and TD-DFT/ B3LYP(6-31G) level of theory, respectively. Our calculations suggest the non-viability of ground state intramolecular proton transfer for both the compounds...

متن کامل

Optical signatures of borico dyes: a TD-DFT analysis

Using Time-Dependent Density Functional Theory (TD-DFT), we investigate the excited-state properties of a series of emissive dyes combining the properties of coumarins and fluoroborate compounds. These boron-iminocoumarins (borico) compounds have been synthesized very recently by Frath and coworkers [Chem. Commun., 49 (2013) 4908]. We determine both their vertical and 0-0 energies, reproduce an...

متن کامل

Theoretical study on the size dependence of excited state proton transfer in 1-naphthol-ammonia clusters.

The geometries and energetics of the ground and lower-lying singlet excited states S0, La, and Lb of 1-naphthol (NpOH)-(NH3)n (n = 0-5) clusters have been computed using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. Cluster size dependence of the excited state proton transfer (ESPT) reaction was investigated by the vertical transitions from the g...

متن کامل

Charge Transfer Enhancement in the D-π-A Type Porphyrin Dyes: A Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) Study.

The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH₃-YD2 and TPhe-YD) were systematically investigated by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2013